
Core Context Aware Transformers for Long

Context Language Modeling
ICML 2025

Yaofo Chen1, Zeng You1,2, Shuhai Zhang1,3, Haokun Li1,2, Yiru Li1,
Yaowei Wang2,4, Mingkui Tan1,3,5

South China University of Technology1, Peng Cheng Laboratory2, Pazhou Laboratory3,
Harbin Institute of Technology4, Key Laboratory of Big Data and Intelligent Robot, Ministry of Education5

June 12, 2025

1 / 29

Outline

1. Background

2. Core Context Aware Attention

3. Experimental Results

4. Conclusion

2 / 29

Outline

1. Background

2. Core Context Aware Attention

3. Experimental Results

4. Conclusion

3 / 29

Large Language Model

Large language models (LLMs) have demonstrated exceptional proficiency across various
applications, particularly in natural language understanding and generation.

Figure: Applications of LLMs: empowering chatbots, coding assistance, and educational tools

4 / 29

Importance of Long-context Modeling

The ability to process longer contexts has been a key factor in improving the performance
of LLMs across a wide range of tasks.

Figure: Long context matters: enabling advanced long text analysis and chain-of-thought reasoning with
large language models.

5 / 29

Challenges of Processing Long Context

When the context length becomes very large (i.e., 128K), the redundant information in
the context tends to increase, which not only incurs unnecessary computational and
storage overhead but also may hamper the modeling representation performance.

Figure: The computational complexity and KV cache of self-attention grows quadratically and linearly with
the length of the context. This figure is from https://poloclub.github.io/transformer-explainer. 6 / 29

Preliminaries

Given a sequence of tokens X = [X1;X2; . . . ;XL] ∈ RL×d, where each token Xi ∈ R1×d,
the self-attention begins by transforming X into a query Q=XWQ, a key K=XWK ,
and a value V=XWV through three linear projections WQ,K,V ∈ Rd×d. The
self-attention is calculated by

Attention(Q,K,V) = softmax

(
QK⊤
√
d

)
V. (1)

The computational and storage complexity:

• The computational complexity of self-attention grows quadratically with the length
of the context.

• During inference, we cache K and V for accelerating attention computation. The
size and KV cache grows linearly with the length of the context.

7 / 29

Outline

1. Background

2. Core Context Aware Attention

3. Experimental Results

4. Conclusion

8 / 29

Motivation

As the context length scales to extremely large magnitudes, it becomes impractical for a
token to maintain significant semantic connections with all tokens in the context.

is a computational model capable of language generation or other natural language processing tasks

<s>L LM is a computational
model

capable of language generation or other natural language processing tasks

LLM is computationala<s> model capable of language generation or other natural language processing tasks

𝑪𝟏(𝒙𝒕)(Redundant Context) 𝑪𝟑 𝒙𝒕 (Core Context)𝑪𝟐(𝒙𝒕)(Core Context)

…
𝑪𝒏(𝒙𝒕)(Redundant Context) 𝒙𝒕

LLM is computationala<s> model capable of language generation or other natural language processing tasks

Figure: Illustration of core contexts and redundant contexts. We show attention scores of the last token
relative to the other tokens in LLaMA2-7B (darker shadows indicate higher attention scores). The last
token exhibits high attention scores towards core contexts. The remains are considered as redundant
contexts, introducing unnecessary computational overhead for attention.

9 / 29

Motivation

The core context (e.g., C2(xt) w.r.t. xt in Figure) refers to the contextual information
that is highly relevant to the token xt, which is crucial for the token’s representation.
Therefore, the model should prioritize the core context over redundant parts.

is a computational model capable of language generation or other natural language processing tasks

<s>L LM is a computational
model

capable of language generation or other natural language processing tasks

LLM is computationala<s> model capable of language generation or other natural language processing tasks

𝑪𝟏(𝒙𝒕)(Redundant Context) 𝑪𝟑 𝒙𝒕 (Core Context)𝑪𝟐(𝒙𝒕)(Core Context)

…
𝑪𝒏(𝒙𝒕)(Redundant Context) 𝒙𝒕

LLM is computationala<s> model capable of language generation or other natural language processing tasks

Figure: Illustration of core contexts and redundant contexts. We show attention scores of the last token
relative to the other tokens in LLaMA2-7B (darker shadows indicate higher attention scores). The last
token exhibits high attention scores towards core contexts. The remains are considered as redundant
contexts, introducing unnecessary computational overhead for attention.

10 / 29

Overview

We propose a Core Context Aware Attention that employs globality-aware pooling and
locality-preserving modules to capture both global and local context dependencies.

• The globality-aware pooling module operates by generating representative core
tokens from segmented groups of the input sequence.

• The locality-preserving module is responsible for capturing the local information of s
neighborhood tokens to ensure comprehensive coverage.

• We devise a differentiable fusion strategy to combine the insights from global and
local modules to generate the final outputs.

11 / 29

Overview

Grouping with size g

③ Differentiable Fusion of Global and Local Modules

𝐀𝐭𝐭 = softmax (𝐐 𝐊G; 𝐊𝐋 T
)/√𝑑 [𝐕G; 𝐕𝐋]

…

…

Input Token Sequence 𝐗 = [x1, x2, … , x𝐿]

Sliding with window size s

… ……

token grouping window-sliding

…
𝑔 s

Group-wise
Weighted Pooling

𝐂 ∈ ℝ𝑚×𝑑

𝐐 = (𝐗𝑾𝑸)′∈ ℝ𝑑×𝐿

𝐕G ∈ ℝ𝑚×𝑑

𝐊G ∈ ℝ𝑚×𝑑

𝐀𝐭𝐭 ∈ ℝ𝐿×𝑑

① Globality-aware pooling Module

𝐗 ∈ ℝ𝐿×𝑑

𝐿

𝑑

𝐐 ∈ ℝ𝑑×𝐿

𝐊𝐋 ∈ ℝ𝑑×𝐿

𝐕𝐋 ∈ ℝ𝑑×𝐿

② Locality-preserving Module
Sliding with window size s

𝐀L ∈ ℝ𝐿×𝐿

𝐀G ∈ ℝ𝐿×𝑚𝐗 ∈ ℝ𝐿×𝑑

𝑚 = 𝐿/𝑔

𝑔

𝑔

𝑚

Complexity: O (Ls)

Complexity: O (Lm)

𝑔

𝑔

𝑔

𝑔

① Globality-aware pooling Module

𝐊G

② Locality-preserving Module

… …

𝐕G 𝐊L

… …

𝐕L

Figure: Illustration of CCA-Attention, which includes two components: Globality-aware pooling module
and Locality-preserving module. We produce the final output Att by fusing these two modules.

12 / 29

Globality-aware Pooling Module: Core Tokens Generation

Motivation: The context redundancy indicates that computational resources can be
dynamically allocated to core contexts while reducing emphasis on the remaining ones.

Solution: Given input tokens X=[x1;x2; . . . ;xL] ∈ RL×d, we segment it into m=⌊L/g⌋
groups, each group containing g tokens (denoting the i-th group by XG

Ii∈R
g×d).

To identify prominent tokens in the i-th group, we devise a group-wise weighted pooling
strategy that employs the last token xig to evaluate the importance. Formally, we derive
one core token ci ∈ R1×d from each group by

ci=softmax

(
QigK

′⊤

Ii√
d

)
XG

Ii ∈ R1×d, i = 1, . . . ,m, (2)

where K
′
Ii=XG

IiW
K . The core token ci encapsulates crucial information of the group.

With m groups, we derive m core tokens C=[c1; c2; . . . ; cm] ∈ Rm×d.

13 / 29

Globality-aware Pooling Module: Core Tokens as Efficient Proxy

To reduce the redundancy, we use the sequence of core tokens C instead of the original
tokens X for attention computation. Formally, we adopt core tokens to calculate the key
and value matrices for a specific query Qi as follows

K̃G
Ti=[KG

1 ; · · · ;KG
j] ∈ Rj×d, ṼG

Ti=[VG
1 ; · · · ;VG

j] ∈ Rj×d,

KG=CWK ∈ Rm×d,VG=CWV ∈ Rm×d,
(3)

The index j in the above Eqn. can be calculated as j=max(0, ⌊(i−s)/g⌋). When the
context is short (i<(g+ s)), the key and value KG, VG would be excluded from attention
calculation since the redundancy in the context is negligible.

During inference, as tokens are generated sequentially, we derive a new core token via the
aforementioned Eqn., once the number of generated tokens reaches g. Different from the
full self-attention, we cache K̃G and ṼG for inference.

14 / 29

Locality-preserving Module

Challenge: The globality-aware pooling module focuses on coarse-grained global
information, potentially overlooking fine-grained local context.

Solution: We introduce a locality-preserving module that complements the
globality-aware pooling module by focusing on neighboring tokens to capture detailed
local dependencies. The key and value matrices for a specific query Qi in the
locality-preserving module are defined as follows:

K̃L
Ui
=[KL

k; · · · ;KL
i], ṼL

Ui
=[VL

k; · · · ;VL
i],

KL = XWK ,VL = XWV
(4)

During generation, it is challenging to maintain the number of tokens as a multiple of the
group size g. To address this, we set the local window size to s+((i− s) mod g).

15 / 29

Differentiable Fusion of Global and Local Modules

Challenge: Both globality-aware pooling and locality-preserving modules involve only a
portion of tokens, leading to a limited comprehensive understanding of the context.

Solution: We seek to combine the involved tokens of these two attentions by
concatenating the key and value matrices from both attentions, i.e., [K̃G

Ti ; K̃
L
Ui
] and

[ṼG
Ti ; Ṽ

L
Ui
], to leverage the combined information. Formally, the proposed CCA-Attention

is computed as follows:

Atti = softmax
(Qi[K̃

G
Ti ; K̃

L
Ui
]⊤)

√
d

)
[ṼG

Ti ; Ṽ
L
Ui
]. (5)

We represent the final output of our CCA-Attention as Att = [Att1;Att2; . . . ;AttL].

16 / 29

Algorithm

Require: Inputs X=[x1;x2; . . . ;xL], parameters WQ,K,V , group size g, local window size s.
1: Calculate the query Q = XWQ, #groups m = ⌊L/g⌋
2: for i in {1, 2, . . . ,m} do
3: XG

Ii
=[x(i−1)g+1;x(i−1)g+2; . . . ;xig]

4: ci=softmax

(
QigK

′⊤
Ii√

d

)
XG

Ii
, where K

′

Ii
=XG

Ii
WK

5: end for
6: Let C = [c1; c2; . . . ; cm]
7: KG=CWK , VG=CWV // Globality-aware Pooling Module

8: KL = XWK , VL = XWV // Locality-preserving Module

9: for i in {1, 2, . . . , L} do

10: K̃G
Ti
=KG

1:j , Ṽ
G
Ti
=VG

1:j , j=max(0, ⌊(i−s)/g⌋)

11: K̃L
Ui
=KL

k:i, Ṽ
L
Ui
=VL

k:i, k=max(1, i−s−((i−s) mod g))

12: Atti = softmax(Qi[K̃
G
Ti
; K̃L

Ui
]⊤)/

√
d)[ṼG

Ti
; ṼL

Ui
]

13: end for
14: Return: Representations of tokens Att=[Att1; . . . ;AttL]

17 / 29

Efficient and Parallel Implementation

We implement our CCA-Attention by leveraging Triton(github.com/triton-lang/triton) to
perform low-level operator fusion between our globality-aware pooling and
locality-preserving modules. This enables us to integrate our CCA-Attention as a
standalone, cache-friendly operator, effectively eliminating redundant computations.

18 / 29

Outline

1. Background

2. Core Context Aware Attention

3. Experimental Results

4. Conclusion

19 / 29

Experimental Results

We apply our CCA-Attention to pretrained LLMs and compare it with state-of-the-art
efficient attention methods in terms of long-context modeling and efficiency.

Dataset and Evaluation Metrics
• LongBench is a benchmark for the bilingual, multi-task, and comprehensive
assessment of LLMs’ long context understanding capabilities.

• Exact Match Score (EM Score) in multidocument QA is a metric for measuring
the model’s ability to find the key information within a long context.

Models and Compared Methods

• Models: We apply our proposed CCAAttention to LLaMA2-7B-32K,
LLaMA2-7B-80K, LLaMA3.1-8B-128K, and Qwen2.5-7B-128K.

• Compared Methods: We compare our proposed CCA-Attention with vanilla
attention, StreamingLLM, LM-infinite, and MInference.

20 / 29

Comparisons on Long Context Modeling

Comparisons on Longbench-E:

• CCA-LLM outperforms all efficient attention baselines across varying context lengths,
attributed to its global-aware pooling for enhanced core-context focus.

• CCA-LLM attains the lowest inference latency and memory usage among
competitors, significantly reducing storage requirements while maintaining speed.

Methods S. QA M. QA Sum. FS. Learning Synthetic Code Avg. FTL (s) Mem. (GB)

LLaMA2-7B-32K (Vanilla Self-Attention) 2.75 1.85 12.43 66.28 0.34 48.99 22.11 9.15 35.58
• StreamingLLM 4.75 2.94 2.97 48.20 0.66 30.16 14.95 5.75 (1.6×) 22.94 (35%↓)
• LM-Infinite 2.04 2.33 1.98 57.45 0.3 48.46 18.76 4.72 (1.9×) 26.35 (26%↓)
• MInference 3.68 3.05 10.97 66.26 0.61 42.30 21.14 4.20 (2.2×) 33.52 (6%↓)
• CCA-LLM (Ours) 3.63 3.98 7.79 61.79 2.64 51.36 21.86 2.59 (3.5×) 19.12 (46%↓)

LLaMA2-7B-80K (Vanilla Self-Attention) 3.22 2.71 3.90 64.98 0.56 59.16 22.42 32.43 60.03
• StreamingLLM 2.07 2.32 0.37 45.03 2.67 37.17 14.94 9.04 (3.6×) 37.45 (37%↓)
• LM-Infinite 2.54 1.53 2.22 61.29 1.08 58.54 21.20 8.27 (3.9×) 41.54 (31%↓)
• MInference 2.44 3.49 4.41 64.26 0.28 57.60 22.08 8.14 (4.0×) 54.09 (10%↓)
• CCA-LLM (Ours) 5.62 4.34 8.99 59.60 0.48 54.40 22.24 6.42 (5.7×) 33.86 (44%↓)

* Refer our paper for results of LLaMA3.1-8B-Instruct-128K and Qwen2.5-7B-128K

21 / 29

Comparisons on Long Context Modeling

Comparisons on Long-document QA:

• CCA-LLM outperforms baselines on short sequences (e.g., 4K) by preserving both
local and global dependencies without token discard.

• For extreme lengths (64K–128K), CCA-LLM delivers up to 7.9× faster inference and
higher accuracy than vanilla self-attention, thanks to adaptive context compression.

• Our method consistently excels across diverse context scales (4K–128K), avoiding
performance degradation by dynamically balancing core/redundant context.

Methods 4K 8K 16K 32K 64K 128K Avg. FTL (s)

LLaMA2-7B-80K (Vanilla Self-Attention) 39.4 37.8 37.6 36.2 34.6 30.3 36.0 124.85
• StreamingLLM 33.6 26.0 32.2 30.6 27.4 25.1 29.2 34.74 (3.6×)
• LM-Infinite 31.6 25.6 32.4 32.2 28.2 26.3 29.4 32.57 (3.8×)
• MInference 39.0 32.4 37.4 36.0 32.3 28.9 34.3 20.18 (6.2×)
• CCA-LLM (Ours) 39.3 33.2 35.4 31.4 35.3 32.0 34.4 15.89 (7.9×)

22 / 29

Comparisons on Computational Efficiency

We compare our CCA-LLM with existing methods in terms of inference latency and
memory footprint during inference on a single NVIDIA A800 GPU.

• CCA-LLM achieves 7.9× faster pre-filling speed than full self-attention (15.89s vs.
124.85s at 128K) and accelerates both pre-filling and decoding phrase.

• With 93% KV cache usage reducing (4.5GB vs. 64GB at 128K), CCA-LLM slashes
GPU memory demands while maintaining end-to-end efficiency.

4K 8K 16K 32K 64K 128K
(a) Pre-filling Latency (FTL)

0

25

50

75

100

125

La
te

nc
y

(s
)

4K 8K 16K 32K 64K 128K
(b) Decoding Latency (ITL)

0

200

400

600

La
te

nc
y

(m
s)

4K 8K 16K 32K 64K 128K
(c) KV Cache Memory Usage

0

20

40

60

M
em

or
y

Fo
ot

pr
in

t (
G

B)

LLaMA2-7B-80K (Vanilla Self-Attention) MInference LM-Infinite CCA-LLM (Ours)

23 / 29

Demonstration of Inference Flexibility

• With no retraining needed, CCA
offers a tunable tradeoff between
accuracy and speed, enabled by its
context-aware compression and
scale-invariant local attention.

• We can dynamically adapt
group/window sizes to maintain
high throughput during peak traffic,
eliminating server bottlenecks while
retaining performance.

3 4 5 6 7 8 9
Latency (s)

20.5

21.0

21.5

22.0

22.5

Lo
ng

be
nc

h-
E

Sc
or

e

LLaMA2-7B-80K
MInference
CCA-LLM (Ours)

24 / 29

Training Convergence Curve

• Our method enables both LLaMA2-7B-32K and 80K models to achieve rapid
convergence within 100 steps while maintaining training stability over 1,000 steps.

• The consistent convergence performance demonstrates the effectiveness of
CCA-Attention as a readily integrable component for existing LLMs, regardless of
their initial context window sizes.

0 200 400 600 800 1000
Training Itertation

101

102

103

Pe
rp

le
xi

ty

CCA-LLaMA-2 7B (32K Context)

0 200 400 600 800 1000
Training Itertation

101

102

Pe
rp

le
xi

ty

CCA-LLaMA-2 7B (80K Context)

25 / 29

Effect of Different Updating Strategies

We can fine-tune the models by two updating strategies: 1) updating all the parameters
(full finetuning) and 2) only updating WQ, WK , WV (partial finetuning).

• Our method achieves optimal performance when fully fine-tuning all parameters,
enabling complete adaptation to the proposed attention mechanism.

• Partial fine-tuning offers a resource-efficient solution with competitive accuracy, ideal
for scenarios with computational constraints.

Strategies Single-Doc. QA Multi-Doc. QA Sum. FS. Learning Synthetic Code Avg.

Partial Finetuning 5.39 3.62 9.21 60.41 1.34 51.77 21.96
Full Finetuning 5.62 4.34 8.99 59.60 0.48 54.40 22.24

26 / 29

Outline

1. Background

2. Core Context Aware Attention

3. Experimental Results

4. Conclusion

27 / 29

Conclusion

• Extremely long contexts in LLMs introduce redundant computations while sparse
attention methods compromise token connectivity. Our Core Context Aware
Attention addresses this by dynamically compress context into core tokens.

• CCA combines (1) a globality-aware pooling module to compress context into
adaptive core tokens and (2) a locality-preserving module for fine-grained context –
achieving linear complexity without retraining.

• CCA enables 7.9× faster inference on 128K contexts while outperforming baselines,
offering a plug-and-play solution for efficient long-context modeling in LLMs.

28 / 29

Thanks for Your Attention

Q&A

29 / 29

	Background
	Core Context Aware Attention
	Experimental Results
	Conclusion

